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NATIONAL ADVISORY C01,_i_IITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 469

A SUVHARY OF DESIGN FOR),TULAS FOR BEAMS HAVING

THIN WEBS IN DIAGONAL TENSION

By Paul Kuhn

This report presents an explanation of the fundamen-

tal principles and a summary of the essential formulas

for the design of diagonal-_ension field beams, i.e., beams

with very thin webs, as developed by Professor Wagner of

G e rma ny.

INTRODUCTION

The necessity for designing structures to the small-

est possible wei_ght for a given load factor has forced

airplane designers to deviate materially in some instances

from construction practices that have become standard In _

older branches Of engineering. Diagonal-tension field

beams are one example of this trend away from established

pract ice.

Diagonal-tension field beams are a special develop-

ment of plate girders in which the shearing force is small

compared with the depth of the girder, so that the reJ_uired

web thickness is very small. Such a thin web would b_zkle

before it reached the _itlmate shearing stross. In c_ruc-

tural engineering, this buckling is prevented by attzching

stiffeners to the web. In many aeronautical structures,

however, the web i_ so thin that an excessive number of

stiffeners would be required to develop a high shearing

stress before buckling. Therefore, a different solution

of the problem has been attempted. The flanges of the

beam are connected by a number of struts which act not as

web stiffeners, but as flange spacers. The web is thus

left free to buckle, the basic idea being that the web aft-

er buckling cannot carry the shear in the beam by develop-

ing shearing stresses, but can and does carry the shenr by

developing tensile stresses in the direction of the diag-
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onal buckles or folds; hence the name "diagonal-tension

field beams."

The choice between the plate girder with a web safe

against buckling and a dlagonal-tenslon field beam depends

on the relative magnitudes of shearing force and depth of

/-/
beam. Using as a criterion the "index value" K = --_-,

where S is the total shear in pounds and h the depth

of the beam in inches, Wagner has estimated (reference i,

p. 3) that a diagonal-tension field beam is probably pref-

erable if E is less than about seven, while a plate gird-

er with a shear-resistant web is preferable if K is more

than about eleven. In the intermediate region there is

little choice between the two.

Beams with an index value K of less than seven are

frequently found in aircraft structures. Instances are

found elsewhere than among beams in the narrower sense of

the word. The theory can also be applied to the shear

skin of monocoque fuselages, hulls, and floats; to the

skin of metal-covered _ings, when the skin is used to

take the shear loads due to drag or torsion; and to the

bulkheads for monocoque wings, fuselages, floats, and hulls.

Attention is called to the fact that the use of a thin web

may be of advantage in truss-type assemblies because the

lateral support which the web contributes to the compres-

sion members map more than compensate for the increase in

weight due to the use of the web.

The theory of diagonal-tension field beams has been

treated by Professor Wagner, of Danzig, Germany, and his

publications have been made available to the American de-

signer in several N.A.C.A. Technical Memorandums. (See

references i - 5.) These translations, however, are dif-

ficult to follow and contain some errors. Consequently,

the present report has been prepared to explain the funda-

mental principles of diagonal-tension field beams, or

"_#agner beams" as we shall call them for brevity, and to

give the formulas essential to the design of such beams.

No attempt has been made to present thederivatlon of the

equations. Any person interested in the theoretical as-

pects of the subject may refer to the original articles

or their translations.
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]_UND_I_E_;T__L ]?RINC I_LES

When a frame as shown in figure i is loaded by a force

P, the diagonal D I will be in tension and the diagonal

D2 in compression. If D2 is a very slender column it

will buckle when P has reached some definite small value,

and if P be increased beyond this value, Dl will take

all of the increase in shear in the panel. The diagonal

D_ will continue to carry a load about equal to its buck-

ling load, but when P becomes very large, the load in

D_ will become negligible as compared with the load in D.

5..-Y ii

P

Figure l.
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If the frame is converted into a beam by replscing

the diagonals with a very thln wet, a similar arguY,lent ap-

plies. The compression stresses in the direction of D_

fold the web into corrugations as indicated in figure 2,

and the shear in the panel is carried by tensile stresses

in the direction of D I. Such a panel with the web in di-

agonal tension constitutes the fundamental unit of the

_Tagner beam. If the panel is square, such as is shown in

figure l, it is quite obvious that the folds will form at

an angle of approximately 45 o. If the panel is a rectan-

gle, the direction of the folds is not so obvious, but the-

o.ry shows that it will still be approximately 45 ° , provid-

ed that all edge members are stiff. The introduction of

additional struts in the panel (fig. 3) does not change

the direction of the folds if these struts are parellel to

the original end struts (reference l, p. lO).
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From the fundamental principles explained in the pre-

ceding section, it follows that, if the flanges and struts

of the cantilever beam shown in figure 3 are very stiff as

regards bending in the plane of the web, application of the

load P will cause the web to form folds at an angle C_,

which is approximately equal to 45 ° . The stress in the

web is chiefly tension which is uniform over the panel

and in the direction of the folds (reference l, pp. 4-21);

consequently, the web may be considered to be cut into a

number of tension diagonals by cuts parallel to the wrin-

kles. If a section through the beam is taken at a distance

x from the right end, consideration of the equilibrium of

the resulting free body shows (reference l, pp. 24-27) that

the tensile stress in the web is

f= 1 (l')
ht sin 2a

where t is the thickness of the web, and •that the forces

in the tension and compression flanges are

HT,C _= +P__x _ cot ah P-
(2,)

where the second term is due" to the horizontal component

of the web _tension. The vertical, component o_f the web ten-

sion, acting along a length d of _ the flange, gives the

force in the struts

V = - P d tan c_ (3')
h
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": Theore{ical: cal':culetions have :sho,,,n that _ is usu-

a.l!y a-fgw degree's :lass. t-han :450: i(reference i, p. 22). '

Observat:ion of test bea.ms has shown that the uns-voidable
,, : , , . ,

irrez_-!l'arities in mat.eria.l, riveting, etc.i, cause devia-

tions fro_.h'tne t,heoretioal value of ¢L. "Consequently, it

is s'.]fficiently accurate for design to assume the co]_ven-

lent _alu.e c_ = 45 o The preceding, formulas therefore be-
collie

f=2_PP
ht

L'

HT,C = ±.kx_ .- l. p

.i " ° _ •

,o .... . .

(i)

C:._}

v = - p _- (s)
h

The spacing of the struts in a Wagner beam should

normally vary between one sixth and one half the depth of

the beam. If the spacing of the struts becomes greater

than the de_th of the beam, _ m_2 become much less than

45 °. _ conservative procedure in this case is to compute

the forces in the tension flange and in the struts with

(_ = 45 °, the force in the co_npression flange and the stress

in the web with _ = i! = tan -! h. In general, such -_ide
d

specing is very impractical and should be avoided ",_nless

strength is a minor considers tion.

THE GEVER_L CASE 0F _.- B_AI_: _'fITH FARALLEL FLANGES

In the {,ienerai case of a beam with yarallel flanges,

the struts nave an inc_ination _ and loads Pn ..are in-

troduced at !.oints other than at the end of the beam (figs.

:>i9\× _'_\ '/',, ', \ \V'\ \ \ \, "1"

i , \ k ' " \ " _ /,-,_.k.:-___-_, L_____,_/,,L.>_,._,,
._.- ::.... (o) ..... b

Fi4_ur e 4.
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Since angle sections or other open sections of small bend-

ing stiffness are often used for struts, the formulas are

derived under two assumptions: I - struts with infinite

stiffness against bending in the plane of the web; and II -
struts with no bending stiffness. The effects of finite

bending stiffness of the flanges will also _be considered.

I - Beam with struts of infinite bendin_ stiffness in

_l__ane of web.- If the struts are rigid and well riveted to
the web, the web tension is constant in any bay between

two struts and changes by a constant amount proportional

to Pn at any strut where a load Pn is introduced (fig.

5). Wherever such a load is introduced the force in the

strut varies linearly from V z to V z throughout the

length of the strut .....

/

/

/

i!

P
n

i f/

Figure 5. _P

The formulas for the case under discussion are (ref-

erence 4, pp. 7 and 8, and reference i, pp. 33 and 34):

f = 2__S i
ht sin 2_ (l ' _an _ cot _) (4 t)

S + 8 Pn
V = _ L R d tan _ I (6a')

I _2 h sin _ ('i - tan _ ¢0t-_ + sin

SL + SR d tan _ I (6b')
V8 = - 2 h sin _ (1 -tan _ cot _)

__ S (cot cz _ cot p) (_')_T,C= +h- _"
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where S and M are _the shear and moment, respectively,

at the section considered, SL and S R are the shears in

the bays on the left and On the rlght Of the strut consid-

ered, and Pn is the external load "applied at the strut.

Figure 4 indicates how_the angles C_ and _ are meas-

ured. If there is any doubt as to whether the acute or

the obtuse value of _ should be used, a diagram of the
beam should be drawn and the tension diagonals sketched in

for each panel, their slope depending upon • the direction

of the shear in the panel. Th_ angle (_ is always acute

and can be taken equal to _/2 unless the struts are

spaced too far apart. If the angle _v determined by a

tension diagonal from panel point to panel point (e.g.,

P to _ ....in fig. 4a)becomes less than _/2; then the
2 3 •

angle _v should be used in place of (z for computin_

the stresses in the web and in the compression flange,

while the angle _ = _/2 should be used for computing

the stresses in the tension flange and in the strut.

In formula (6ai), the negative sign for Pn must be

used if the load Pn causes compression in the strut and

the positive sign of Pn causes tension. The maximum

force in the strut is given either by (6a v) or (661), de-

pending upon the sign of Pn, and it occurs at the junc-

tion of the strut with that flange which would be cut

first by an arrow flying in the direction of the force i=n .

II - Beams with struts of zero bendin_ stiffness in

p_lane of web.- _ better general a_proximation to actual•

conditions is probably obtained by assuming the struts to

have negligible bending stiffness in the plane of the web.

Under this condition, the folds are not interrupted where

they cross the struts (fig. 6) and the web stress is con-

stant aleng the full length of any tension diagonal.

/"

J

J

i
i,_ ,l fT

P

i

fP
Figure 6. ,!_
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Thus, at any section of the beam taken parallel to the

struts, the web '__tr,e_s varies throughout the depth of the

beom. This case has been solved under the assumption that

all struts are loaded, and that the loads l_n are propor-

tional to the spacing of the struts. Under this assump-

tlon the force in the strut is constant throughout its

length. •

The formula for the forces in the flanges is the same

as under the assumption of rigid struts. The formulas for
the web tension at the strut and for the forces in the

struts become for this case (reference 4, p. 9),

i ,

fT,C = t_SL + SRJ_ ht sin 2a (I - tan a cot _)

- 1 Pn (7,)
+ 2 dt s_

V ____ --

($L + S R) d tan a i

2 h sin _ (I - tan _ cot _)

P

n (8')
2 Bin _

If loads Pn are applied over only a portion of the

beam and are approximately proportional to the apacing of

the struts, the formulas can be used as good approximations

in the middle part of the loaded region of the beam. On

the borders of this region, or in general at any place

where the loads _n are not proportional to the spacing of

the struts, each case must be given special consideration,

as indicated in the last example of the appendix.

III - Formulas for Eenerol use.- For practical pur-

poses, the t,_o sets of formulas for rigid and for flexi-

ble struts may be simplified and combined into one set.

_Vhen the proper value of _ has been found as explained

in section I, the value of _/2 can be substituted for c_.

Furthermore, struts will be designed in most cases for the

average load they carry, the variation of this load along

the length of the column being disregarded. With this sim-

plification, the formulas for the force in a strut become

identical for the two cases. The only remaining differ-

ence between the two cases is the web tension; for rigid

struts the web stress is constant across sections parallel
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to the struts; for flexible struts, the web tension varies

linearly between the two values given by formula (4b)
across such sections of the beam.

The general formulas therefore become

f = 2__Scot _ (for stiff struts) (4a)ht

(S L + S/_) 2_ Pn
f = _ _ -ht;- cot i 2 dt sln 2 "_ (for flex- (4b)

2 Ible struts)

= + M s (cot _$ cot t_) (5)HT'C - h 2

(SL + sR) d
V n =

S h 2 sin

(for choice of sign in equation (6) see note regarding
equation (6a,).)

The decision as to whether a given strut should be

considered as being rigid, very flexible, or of some inter-

mediate stiffness must be left to the Judgment of the de-

signer. In general, it can be said that even struts of

closed section do not approach the theoretical condition

of rigidity very closely.

IV - The effects_[[__._ii_h_d!n__a!![i_aa[of the

[lances.- The tension in the web causes bending stresses

in the flanges (fig. 7) which are superrosed on the longi-

tudinal stress caused by ET or H C.

f-

/

L

J

f

i

f
....._k..........--_-__.-__,;-_C,j1s_'_.'L.;i

Figure 7. _P
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The normal component of the web tension being considered

as a uniform load and the flange as a beam continuous over

the struts as supports, the maximum bending mo:ment in the

flange occurs at the strut and has the magnitude

M r - S d2 tan
Y2

(9,)

This expression is sufficiently exact for calculating the

secondary stresses caused by bending of the flanges in

any Wagner beam of normal proportions (reference 5, p. 34);

i.e., in a beam where the struts are spaced from one sixth

to one half the depth of She beam,

If the bending stiffness of the flanges i_ not infi-

nite and the spacing of the struts is increased, a point

is reached where only a part $ d of the web is in tension

(fi . 8).

N : '/
K_ b

j i

I

• 1
I

Figure 8.

This causes a reduction in M F to MF', where

M F' = O I X M F (I0')

The factors _ and C I are given in figure 9 as functions

of the nondimensional parameber

4

_d = 1.25 d sin a d
(ll,)

(I T + IC) h

where I T and I C are the moments of inertia of the ten-

sion and compression flanges about their own centroidal
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1.,_F, = Ci_

__l_
fmax -02 favg

axes. _Vhen only a portion of the -eb is in tension, equa-

tion (it), (4'), or (7') gives the average stress. The

maximum _,eb stress is

i_
fmax = favg X Ca

where Co is a factor given by figure 9. (See reference

5, pp. 33-37, for equations (i0'), (ll'), and (12').)

_t the end of the beam, or at any point ,_here 8n ex-

ternal load is applied, 'a bending moment analogous to M F

is induced in the struts• Either these members must be

made sufficiently strong to withstand the bending moments

or diagonal members must be used in adjacent bays. Fig-

ures 3 and 8 sho_ some of the posslble solutions.

THE C_SE OF THE BEA_! _'_ITH H0.h_P_I_KLLEL FLANGES _

In structuz-al design, it is generally assumed that-in

a beam wltn nonparallel flanges the forces in the flanges

,, .- .

: . t
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are in the direction of the flanges. Hence, equation (2)

or (5) gives only the horizontal component of the flange

forces; the total flange forces and their vertical compo-

nents are easily computed from the horizontal components

and the inclination of the flanges.

f- 8

i I h \

/ k

iil I l\J 1

%1 B
Figure I0.

iP

The vertical components of the flange forces carry a

part of the shear. Accordingly, the shear S w carried by

the web is the difference between the total shear S and

the vertical components of the flange forces:

Sw = S _ hM (tan 8 T + tan 8 C ) (13')

(See fig. i0.) This shear Sw is used to calculate the

web tension and the force in the struts, using the formu-

la,s given for beams with parallel flanges (reference 4, pp.
l-6).

The web stress thus computed is the stress at the cen-

ter line of the beam. It varies along the de_th of the beam

even though there are no intermediate loads applie_ at the

stru_s. Since the stress is constant along any tension di-

agonal, the web stresses at points A and B may be ob-
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tained by drawing the tension diagonals through them, mak-

ing an angle a with the center line of the beem, and cal-

culatin6 the stresses for points A t and B f. The same

met_od aprlies for a.beam with intermediate loads if the

struts have small bending stiffness, provided that the

loadin_ of the beam near the section investigated conforms

to t_e assumption underlying formula (71); viz, that the"

loads are proportional to the spacing of the struts. If

the struts have large bending stiffness, the tension may

be considered constant in any bay and equal to the avera_(e

tension given by equation (1) or (4), using for h the av-

erage height of the bay.

The method here outlined for calculatin_ the forces in

Wagner beams with nonparallel flanges is only approximate;
it should be used -ith caution when the inclination of the

flanges becomes large.

DEFLECTI0}TS OF W_GNER BEAMS

For the computation of the deflection of Wagner beams,

the following approximate method is proposed by the author
until further data are obtained:

(1) Calculate the bending deflection of the beam by

standard beam-deflection formulas.

(2) Calculate the shear deflection of the web in the

following manner:

Imagine the beam re]_laced by a frame consisting

of the beam flanges, diagonals inclined at the angle

_, and vertical struts regardless of whether the

struts in the Wagner beam are vertical or inclined.

Assume the diagonals to be under a stress equal

to f and compute the deflection of the substitute

frame due to elongation of the diagonals only.

(When the frame is divided into panels in the

manner prescribed there will usually be a short odd

panel left at the end, but this panel of odd size

can be neglected in the calculation of the shear de-

flection.)
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(3) Add the bending deflectlon and the shear deflec-

tion.

If the method proposed is applied to a cantilever

beam such as the one shown in figure 3, the following for-

mula is obtained for the deflection at _the end of the beam:

where I

s

D - P _ + 4P____?
3RI Eth

is the moment of inertia of the beam.

(14,)

EIQPERI}_.ENTAL CHECK OF ACCURACY OF FORMULAS

The results of strain-gage measurements on a beam

with parallel flanges and vertical struts are given in ref-

erence 3. The ex_erlmental results check the calculated

values within about 5 percent for the stresses in the web

and in the flanges. The experi_entally obtained stresses

in the strut are much smaller than t_e calculated stresses.

This discrepancy is probably due to the fact that the ac-

tual inclination of the folds differs from:the assumed in-

clination. Examination of formulas (i'), (2t), and (3 1 )

will show that anerror in a affects the force in the

strut much more than _t affects the stresses in the web or

those in the flanges.

It may be mentioned here that Professor Wagner sug-

gests the use of _ = 40 ° . This is indeed a better aver-

age value, but attention has already been called to the

fact that the inclination of the folds is never quite reg-

ular. Furthermore, the gain in the average accuracy of

computing the force on the strut Is only of academic inter-

est, since the allowable stress for the struts is very un-

certain. The use of cL = 450 in preference to c_ = 40_

is therefore recommended because it is simpler to use and

more conservative.

The formulas for t_e cantilever beam with parallel

and rigid flanges, closely spaced vertical struts, and a

single load can be derived with very few basic assumptions.

Any complication such as inclined struts, inclined flanges,

or intermediate loads necessitates additional assumptions

and decreases the probable accuracy of the formulas. How-

ever, it is believed that all the formulas are sufficient-
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ly accurate for airplane design purposes as long as the
proportions of the beam are not abnormal.

Formula (14 I) errs on the unsafe side. For loads up

to about i0 percent of the yleld-polnt load, calculated
deflections should be multiplied by 4/3. For higher loads,

much higher correction factors may be necessary, but the

experimental evidence is insufficient to warrant any rec-
ommendat ions.

THE DESIGN OF WAGNER BEAMS

Omitting problems of detail design which are best

met in the shop, this discussion will confine itself to
allowable stresses. It seems advisable to deal with the

problem first from a simple but "theoretLical '' point of
view. Later it will be pointed out that practical consid-
erations may require considerable modification of the "the-

oretical" allowable stresses.

If the design is to be bssed on the ultimate strength,

the allowable stress for the web and the tension flange

should be the ultimate tensile strength of the material.

If the design is to be based on the yield strength, the

yield-point stress would, of course; be substituted.

The allowable stress for the compression flange de-

pends on the shape of cross section, the lateral support

of flange, etc., considerations which are beyond the scope
of this report and will not be discussed here.

The struts are, in effect, columns with lateral elas-

tic support, since the tension in the web restrains the

struts from buckling out of th.e plane of the web. By a

seri_s of calculations (reference 4. pp. 15-23), Professor
Wagner has evaluated this effect on the theoretical buck-

ling strength of the struts, 'On the further assumption
(reference 4, p. 24) that two columns fail at the same

stress if they have the same index value K, Professor

Wagner's calculations yield a reduction factor C s (see
fig. II, computed from an approximation of the lower curve

in fig. 27 of reference 4), which is a function of the pa-

d

rameter h (cot c_- cot _) , and by which the actual

length _ of the strut is multiplied in order to obtain a
reduced length

' = C "t, (15')
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C3

h(cot _-cot B)

Reduced column

length.

_l = C3 _

Figure II.

With this reduced length L' and the actual cross section

of the strut, the allowable stress for the strut may be

computed (reference 4, p. 27) by standard formulas or ob-

tained from column charts for pin-ended columns. The al-

lowable:load on the strut is then obtained by multiplying

this allowable stress by the effective area, which is the

sum of the area of the strut and an adjacent strip of the

web. For duralumin, the effective width of this strip may

be taken as 2w = 30 t; for stainless steel, 2w = 60 t

(reference 6),

The theoretical allowable stresses given may serve as

a guide for design until additlonal practical experience

has been gained. The following considerations should al-

ways be borne in mind, however, ias they may necessitate

appreciable changes in the allowable stresses.

i. The folds cause bending stresses whlch may lower

the ultimate strengthandthe fatigue strength; the folds

themselves may impair the performance of the airplane.

2. The wrinkles form at low loads and reach an ap-

pre_iabre size Under normal flight conditions (fig. 12a

taken from reference 2). If they appear on parts exposed



N.A.C.A. Technicsl Note No. 469 17

°.

,L

to view during flight (wing covering), they will engender

a serious loss of confidence on the part of pilots and

passengers even though the structure is perfectly safe.
This consideration may perhaps seem unimportant, but the

scanty experience available at present indicstes that it

may be very decisive.

3. The factor C 3 for the design of the struts is

probably very conservative in most cases. Unfortunately,

tests on the buckling strength of the struts will not or-

dinarily be very conclusive, since the buckling occurs so

gradually that no one point can be designated as the _oint

of failure.

In conclusion, it may be stated that the establishment

of rules more comprehensive than those indicated mill be

possible only after considerable practical experience has

been gained.

Langley Memorial Aeronautical Laboratory,

National Advisory Committee for Aeronautics,

Langley Field, Va. , June i, 193_.
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APP END I X

Illustrative Problems

Probleml.

Analyze the beam of figure 13. The material is dural-

umin; the allowable stress in the compression flange is as-

sumed to be 26,000 pounds per square inch.

/
/

/
/

./: '

/
/

.... 12 x I0" = 120" =I _2" x 2" x

.... i

I I
I L ....llilllBo-

SO' twoon

oen-

• _ [ troids

I" x i" x 1/8" (_)ne sido only) _S" x S" x

Figure 13.
20,000 Ib

The stress in the web is (formula (i))

f ._

2 x 20000

30 x 0.025
= 53,300 Ib./sq.ln.

The forces in the flanges are (formula (2))

KT O = + 20___0_00x 120 I X 20,000
, 30 2

H T = + 70,000 lb.

;TC = - 90,000 lb.

The stresses in the flanges are therefore

f = + 70000
T 2 X 0.72

= 48,600 lb,/sq.in.
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fc --

r

90000
2 X 1.77 -- 25'400 lb'/sq'in"

The force on any strut.is (formula (3))

v = - 20,000 x 1.00= _ 6,670
30

Since _ = 900 d = 0 33, figure ii, a = 45 °, and _ .

gives C 3 = 0.40; - therefore the reduced column length

(formula (15')) i's

' = 0.40 X 30 = 12 in.

The slenderness ratio is L_ 12 = 40; therefore,
p 0.3O

the allowable stress (referance 7, fig. 6) is

F c = 27,800 ib./sq, in.

The effective width of sheet that acts with the strut

is 2v = 30 X 0.025 = 0.75 in.; therefore, the total ef-
fective area

A e = 0.23 + 0.75 X 0.025 = 0.249 eq.in.

and the allowable load

Pallow = 0.249 X 27,800 = 6,920 lb.

The maximum bending moment in the flanges due to the

web tension is (formula (9'))

MF = 20000 X I0012 X 30 _-J= 5,560 in.-Ib.

The maximum total stress in the tension flange is
therefore

fT = 48,600 + 5_5_60 X 0.56-- 54,360 Ib /sq.ln.
0.54

The maximum total stress in the compr_ss_ion flange is

fc = - 25,400 - 5560 X 2.15 = _ 29 510 Ib./sq.in.
2.90
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This stress is above the allowable stress specified for the

compression flange, but still below _he yield point. In

view of the fact that the specified maximum stress is based

on considerations of bhckling; 'the purely local a_d com-

paratively small overstress appears admissible.

Formula (II) gives ....•
A .

y 0.025 = 1 • 1oo d = 1.25 X i0 X 0.707 (0.54 + 2.90) X 30

Figure 9 shows that _ and C, are practically

equal to unity for'ti_s value of a,d_ there is consequent-

ly no reduction in M F, and the web stress is uniform.

When calculating the deflection, the moment of iner-

tia of the beam is computed approximately as

I = 3.54 × 8.68 _ + 1.44 × 21.322 = 923 in. 4

The deflection formula (14 t) gives for low loads

_, X 1203 4 × 20000 X 120 \hD = 4/ 20000 V +
3_ S _, 10 X 923 10 X 0.025 X 307

= _ (I 25 + 1 28) = 3'.38 inches
3 "

Problem 2.

Given the beam of figure 13; bu_ •with a spacing

d = 20 inches of the struts, calculate the stresses in the

web and in the flanges.

The average stress in the web Is, as in the preceding

example,

/f = 53,300 lb. sq.ln. ':

The direct stresses in the flanges also remain un-

changed

. , -fc = - 25,400 lb. sq.in. ," "

The parameter 00 d is twice that of the preceding ex-

ample (since d is doubled)

e_d = 2 X I.i = 2.2

°
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which gives C = 0.95 and C = 0.90.

The maximum web stress is therefore

= 53,300 X 1
-. ft max 0 90

- 59,200 ib./sq.ln.

The maximum bending moment in the flange is (formulas

(9 I) and (i01)) >

MFI = 0.9,5 X
20000 X 400

12 X. 30
= 21,i00 In.-Ib.

and therefore the bending stress in, the flange

fb = 21100 X 0.56 21,900 Ib./sq.ln.
0.54

or the maximum total stress in the tension flange at the

inboard end

fT = 48,600 + 21,900 = 70,500 ib./sq.in.

fo = - 25,400 -
21100 X 2.15

2.90
= - 41,000 ib./sq.ln.

It will be necessary either to us e stronger flanges or

to reduce the spacing of the struts at the inboard end of
the beam.

Problem 3.

Find the forces in the flanges, the forces on the

struts, the reduced column length, and the stresses in the

web for the beam shown in figure 14.

4, ,:x),:) lb.,

/ j--'" t ._O .0,S5" I_--_-L._.-___-J.>I,_=-L:

// 120" 2,:,,00 lb.

- ,;. 20,000 lb. _,

Figuro 14.
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The struts at the end and under the 4,000-pound load

are to be considered as stiff; the other struts are to be

considered as flexible.

The inclination of the struts is _ = 60 Q,

the inclination of the folds is a _ 30 °
2

at the inboard end is

therefore,

The moment

M = 20,000 x 120 + 2,000 X ii0 + 4,000 X 82.7

= 2,950,000 in.-Ib.

The forces in the flanges at the inboard end (formula

(5)) are

HT,C=_295000030 260002 (1.732 Yr 0.577)

HT = + 83,360 lb.

KC = - 128,380 lb.

the force in strut A is (formula (6'))

VA = 20000 + 22000 X I0 2000- 2 _+- 2 X 0.866

=- 5,850 lb.

(Note that the second term has a _osltive sign for _A
a negative sign for VB. Cf. no e on formula (6a).

The force in strut B is

and

VB = _ 22000 + 26000 X I_0 _ 4000
2 30 2 X 0.866

=- I0,310 lb.

d = I0 = 0.29
h (cot a- cot _) 30 X 1.155

which gives C = 0.39 and
3

30
L' = 0.$9 x

0.866
- 13.5 in.
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The system of loads does not fulfill the assumption

under _hich equation (4b) for the web stress with flexible

struts is derived. Consequently° a special consideration
is necessary in this case.

Assuming first _h_t all struts are Tigld, formula (4a)

yields for the web stress -

In the end _a_el: f = x'1.732
30 X 0.065

= 35,600 Ib./sq.in.

in the second panel from the end: f = 39,200 ib./sq.ln.

in the third panel (and all others): f = 46,300 lb./

sq. in.

0onsidering strut a as flexible, equation (4b)

gives for the meb stress at strut A

2000
f = 2200030X +0.06520000 X 1.732 -T- 2 X 10 X 0.065 X 0.25

= 37,400 + 6,150

fmax = 43,550 I b. / sq. in.

fmin = 31,250 Ib./sq.in.

The minimum web stress of 31,_350 pounds per squar'e

inch at the upper end of A is probably too low, since if

the 20,000-pound load were the only Ioa_d acting there would

be a uniform web tension of 35,600 pounds per square inch
throughout the beam. This latter value should therefore

be considered as the minimur_] web stress at strut A, occur-

ring at the upper end.

The maximum web stress of 43,550 pounds per square
inch occurs at the lower end of strut A, and should be used

for design. Actually the stress may be less, in view of

the argument given that the actual minimum stress at the

upper end is probably more than the theoretical value.

If, for the purpose of saving weight, the thickness

of the web is reduced in the end panel, a somewhat larger

margin should be provided here than in the rest of the
beam to take care of stress concentration due to flexibil-

ity of the end strut.
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Figure 12.- Cantilever Wagner beam with concentrated load at

tip under test.




